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Abstract—Uncertainty computation in deep learning is essen-
tial for designing robust and reliable systems, which must con-
sider performance measures beyond standard test set accuracy.
The problem of detecting out-of-distribution (OOD) is increas-
ingly popular these days due to model safety and robustness
concerns. In this work, we adopt a novel approach to train the
feature extraction model using a Bayesian-based optimizer. A
new data augmentation technique that combines style transfer
and pixel-wise picture mixing is also proposed and tested. Several
OOD detection methods based on feature extraction are used to
prove the feasibility of the Bayesian optimizer.

Keywords—Out-of-distribution detection, Bayesian, Data aug-
mentation, Rectified activations, K-nearest neighbors

I. INTRODUCTION

The concept of out-of-distribution (OOD) detection has been
investigated across various fields, such as statistics, machine
learning, and deep learning. In scholarly discourse, OOD arises
when a model is tested on data that significantly deviates from
the data on which it was trained, due to factors such as changes
in the underlying data distribution, noise, or intentionally
deceptive data. Detecting OOD samples is essential to ensure
the reliability and safety of machine learning models in real-
world scenarios, as they may produce unreliable or potentially
harmful predictions.

As illustrated in Figure 1, a well-trained model for clas-
sifying closed-world data with matched training and test-
ing distributions may struggle with open-world data fea-
turing entirely different distributions. In computer vision,
Deep Neural Networks (DNNs) have significantly advanced
visual recognition systems over the past decade but still fall
short of achieving human-level performance in real-world
environments, primarily due to their vulnerability to OOD
scenarios. These scenarios can involve objects with unusual
poses, textures, or shapes, or challenging weather conditions
and atypical contexts. Turing Award winners Yoshua Bengio,

The authors thank Prof. Kaizhu Huang and TA Zhiqiang
Gao for their support and guidance. The code is available at
https://github.com/linyueqian/ECE590K OOD Public.

Geoffrey Hinton, and Yann LeCun have acknowledged this
lack of robustness as a core open problem in deep learning [1],
which remains largely unsolved despite considerable progress
in the field.

Fig. 1. Real World Example

In the context of machine learning, various methods
have been developed to detect OOD samples, including
classification-based [2], density-based [3], distance-based
[4], and reconstruction-based approaches [5]. Despite their
widespread use and remarkable performance in controlled
settings, DNNs are often not robust to shifts in the data-
generating distribution, resulting in untrustworthy predictions
in real-world applications, particularly in safety-critical envi-
ronments.

In supervised learning settings, the input space is repre-
sented by X = Rd, while the label space is denoted by
Y = 1, 2, . . . ,K. The training dataset is obtained from a joint
distribution, P = X×Y , which is assumed to be drawn inde-
pendently and identically distributed (i.i.d). A neural network
is then trained using this dataset, represented by the function
f(x; θ). During testing, however, data may be sourced from
a distribution that is different from the training dataset. This
out-of-distribution (OOD) data possesses a label set that does
not interact with Y and should not be predicted by the model.

https://github.com/linyueqian/ECE590K_OOD_Public


Consequently, OOD detection can be formulated as a binary
classification problem,

G(x; f) =

{
0 if x ∼ Do.o.d
1 if x ∼ Di.d.

, (1)

where “o.o.d” and “i.d” represent out-of-distribution and in-
distribution data, respectively.

Although deep learning has been applied widely in detecting
OOD samples, it has some issues which make its applica-
tion difficult in some fields. For example, it is more likely
to overfit when the dataset is small, and it lacks reliable
confidence estimates [6]. More importantly, the structure of
DNNs neglects the information the data contains and fails to
utilize data geometry. However, data geometry is especially
crucial for OOD detection. As Bayesian principles exploit the
information of data by using Bayes’ rule, it has the potential
to deal with such issues and the application of Bayesian
principles is more likely to improve uncertainty on OOD
samples. The use of Bayesian principles for neural networks
has been proposed in the 90s, such as MCMC methods [7],
Laplace’s method [8], and variational inference (VI) [9]–[11],
and benefits of Bayesian method have been widely discussed
in famous machine-learning books [12], [13]. However, it is
rarely used in practice due to computational expenses.

The main difficulty is the computation of posterior distri-
bution and it has been challenging even for approximation
methods, such as VI and MCMC, to cope with large datasets
such as ImageNet [14]. However, recently proposed natural-
gradient VI has been proven to be practical in deep learning
[15], and in our work, we demonstrate that Bayesian principles
can be applied in the training process as the optimizer of deep
learning for OOD detection.

In this report, our key results and contributions are:
1) We present an effective model to solve OOD detection

by incorporating the Bayesian optimizer (VOGN) to ex-
tract features, Style Transfer Mix as image enhancement,
and rectified activations to reduce overconfidence issues.

2) For the training process, on LeNet5, we use VOGN fea-
turing Bayesian principles as an optimizer and demon-
strate that it can improve the uncertainty on out-of-
distribution data compared with conventional optimizers
such as Adam.

3) For image enhancement, we propose a new data augmen-
tation technique called StyleMix combining style transfer
learning and pixel mixing. We show that the new data
augmentation skill can increase the model’s accuracy.

4) For addressing overconfidence issues, we incorporate
Rectified Activations into our model based on their
effectiveness in enhancing the performance of OOD
detection, attenuating the overconfidence activations by
rectifying the activations at an upper limit c > 0.

II. METHODS

A. Data Augmentation

As stated in [16], data augmentation skills can improve the
performance of the model and expand the limited dataset. To

increase the model’s accuracy in predicting the in-distribution
and out-of-distribution data, some common data augmentation
techniques can be used, including rotation, flipping, scaling,
cropping, translation, and adding noise. These techniques can
be applied to both the input data and the output labels to gen-
erate new data samples. For example, in image classification
tasks, flipping and rotating the images can create new samples
that are still valid for the task.

Another useful technique is transfer learning, which in-
volves using pre-trained models on large datasets to improve
the accuracy of a smaller dataset. This can be particularly
useful when the available dataset is small or limited, as the pre-
trained model can help to generalize to new data and reduce
overfitting. In this report, we explore the idea of style transfer
and mixing pictures pixel-wise.

The authors of [17] propose a new data augmentation
technique called ”style augmentation” that uses random style
transfer to improve the robustness of CNNs for classifica-
tion and regression tasks. The technique randomizes texture,
contrast, and color while preserving the shape and semantic
content. The authors show that data augmentation significantly
improves robustness to domain shift and can be used as a
simple, domain-agnostic alternative to domain adaptation. An
example of the result of the style transfer is shown in Figure
2.

Fig. 2. Style Augmentation Example

We first tested the original Style Augmentation on the
CIFAR-10 [18] dataset, which, however, is not increasing the
accuracy of the OOD detection as the transferred style appears
to be a bit too much change for a 32 × 32 picture. We then
argue that style augmentation can be combined with traditional
augmentation techniques to improve network performance. We
adopt the algorithm listed in [19] to realize the combination.
The algorithm involves mixing an original image with either
an augmented version of the original or a randomly selected
image from a mixing set, using randomly selected mixing
operations such as additive or multiplicative (as shown in
Figure 3). The mixing process is repeated a random number
of times up to a maximum of k. The mixing set in the original
paper includes fractals and feature visualization pictures, but
we use the transferred picture instead. The algorithm also in-
cludes an augmentation function that randomly applies various
operations such as rotate, solarize, and posterize to the input
image. The resulting image is returned as the output of the
algorithm.

A pseudo-code of our proposed algorithm is shown in
Figure 4.



Fig. 3. Pixel Mixing Pipeline

B. Bayesian Optimizer Model
In this project, we apply the natural-gradient VI method

(VOGN), proposed by Khan et al. [20]. Although VI is a
classic Bayesian estimation method, previous VI methods,
proposed by Graves [21], require considerable efforts in tuning
and have slow optimization process. VOGN addresses this is-
sue by combining VI and natural-gradient updates [22], which
offers a flexible alternative to applying Bayesian principles in
deep learning.

1) VI and natural-gradient updates: VI approximates exact
Bayesian inference by learning parameters of q(θ), the best
approximation of the true posterior p(θ|D). The posterior is
given by:

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (2)

where D represents the dataset, (D|θ) is the likelihood, and
p(θ) is the prior of parameters. By assuming q(θ) as an
exponential family distribution, VI maximizes the Evidence
Lower Bound (ELBO) to obtain optimized parameters η:

LELBO(η) = Eqηθ[logp(D|θ]−KL[q(θ)||p(θ) (3)

The goal of natural-gradient updates is to optimize L(η) (can
be some loss function in DNN) with respect to η by taking
gradient steps as follows:

ηt+1 = ηt + βt(ηt)
−1∇ηL(ηt), (4)

where F (ηt) is the Fisher information matrix that contains
the information geometry of the distribution being optimized,
and βt is the learning rate. The form of the natural-gradient
update is similar to the gradient descent in neural networks as
described below:

ηt+1 = ηt + βt∇ηL(ηt), (5)

This shows that the natural-gradient update takes advantage
of the information on the distribution by using the Fisher
information matrix, which makes it more advanced than the
simple gradient descent method. Furthermore, by exploiting
features of exponential family distribution, we can simplify
the natural-gradient step as:

ηt+1 = ηt + βt∇mL∗ (mt) , (6)

where L∗ (mt) is the same function as L(η) except written
in terms of the mean parameters m. From exponential family
distribution, m = Eqη(θ)[ϕ(θ)], where ϕ(θ) is the sufficient
statistics and therefore m = ∇ηA(η).

2) Natural-gradient VI: Now we combine the natural-
gradient update and VI by plugging the ELBO (Equation (3))
into the natural-gradient update (Equation (6)). Referred to the
appendices in [20], let the prior p(θ) be an exponential family
distribution with natural parameters η0, then KL term in the
ELBO can be simplified as:

∇mKL term = η0 − η (7)

After putting it back to ELBO, we obtain:

ηt+1 = (1− βt) ηt+βt

(
η0 +∇mEqηt (θ)

[log p(D | θ)]
)

, (8)

which is presented in detail in [23], which is called ”Bayesian
learning rule”.

3) VOGN: From Equation (6), we obtain:

Ft = ∇mEqηt (θ)
[log p(D | θ)] (9)

In this section, we now consider a Gaussian approximating
family, qη(theta) = N(θ;µ,Σ) and substitute parameters into
Equation (6) to obtain updates of µ and Σ by replacing natural
parameters η with µ and σ:

η(1) = Σ−1µ, η(2) = −1

2
Σ−1,

m(1) = µ, m(2) = µµ⊤ +Σ.
(10)

Let the prior be a zero-mean Gaussian, p(θ) = N(θ; 0, δ−1I),
and then prior of natural parameters can be written as

η
(1)
0 = 0, η

(2)
0 = −1

2
δI (11)

We now simplify ∇mFt to be with respect to µ and Σ instead
of m by using chain rules, following Appendix B.1 in [24].
Therefore, we obtain:

Σ−1
t+1 = (1− βt)Σ

−1
t + βt(δI− 2∇ΣFt). (12)

µt+1 = µt + βtΣt+1(∇µFt − δµt). (13)

To deal with ∇µFt and ∇ΣFt terms, we use Bonnet’s and
Price’s theorems to express equations in terms of the gradient
g(θ) and Hessian of the negative log-likelihood H(θ), and
apply Gauss-Newton matrix to approximate Hessian following
[20]. Therefore, we obtain the ultimate algorithm of VOGN:

µt+1 = µt − αt
ĝ(θt) + δ̃µt

st+1 + δ̃
(14)

st+1 = (1− βt)st + βt
1

M

∑
i∈Mt

(
gi(θt)

2
)
, (15)

where st = (Σ−1
t − δI)/N which makes the calculation

simpler.



d e f s t y l e t r a n s f e r m i x ( img , b e t a = 0 . 8 ) :
# R e s i z e t h e i n p u t image t o 256 x256
r e s i z e d i m g = cv2 . r e s i z e ( img , ( 2 5 6 , 2 5 6 ) , i n t e r p o l a t i o n =cv2 . INTER CUBIC )

# Apply s t y l e t r a n s f e r t o t h e r e s i z e d image
s t y l i z e d i m g = s t y l e t r a n s f e r ( r e s i z e d i m g )

# Mix t h e s t y l i z e d image and t h e o r i g i n a l image u s i n g t h e PIXMIX a l g o r i t h m
mixed img = pixmix ( s t y l i z e d i m g , img , b e t a = b e t a )

# R e t u r n t h e mixed image
r e t u r n mixed img

Fig. 4. The style_transfer_mix function in Python.

C. Rectified Activations

Rectified activation is a simple but very effective method
for enhancing the performance of out-of-distribution detection
[25]. Figure 5 shows the output of the penultimate layer of
ResNet. The solid line shows the mean value and the shaded
area shows the standard deviation. The mean of the ID data
is higher than the OOD data, but the variance of the OOD
data are higher than the ID data. As a result, such a high
value of output can undesirably impact the confidence of the
OOD data, leading to some over confidence of OOD data.
The above observation yields an simple and effective method
of clipping the activations above a threshold. To be specific,
the over confidence activations can be attenuated by rectifying
the activations at an upper limit c > 0. What worth noting is
that this process can be done without any modifications to the
pre-trained model.

Fig. 5. Distribution of penultimate layer of ID and OOD data

For instance, we consider a pre-trained neural network
model parameterized by , which encodes an input space Rd

to a feature space with dimension m. This feature extractor is
denoted by hθ(x) ∈ Rm, which ends up with the penultimate
layer of the network. The weight matrix that maps h(x) to
the output logits f(x) is denoted by W ∈ Rm×K , where K
is the total number of classes in the ID dataset. The rectified
activation of the penultimate layer of the network works as
follows:

h̄(x) = min(h(x), c), (16)

As a result, the operation obliterates the activations above
the threshold c, to mitigate the effect of overconfidence of the
OOD data. The output logits of the model after the rectified
activation is:

fReAct(x; θ) = W⊤h̄(x) + b, (17)

where b ∈ RK is the bias term. When the threshold c = ∞,
it means the output is not influenced by the rectified layer. In
practice, we choose the c according to the value that 90%
of the features of ID data is not truncated by the rectified
activation.

During inference time, the output after the rectified ac-
tivation can be leveraged by various postprocessors by the
following criteria:

Gλ

(
x; fReAct ) = {

in S
(
x; fReAct

)
≥ λ

out S
(
x; fReAct

)
< λ

, (18)

where S(x; f) is the scoring function. The threshold λ is
chosen based on the resulting high fraction of ID data is
correctly classified (i.e. 95%).

D. Out-of-Distribution Post Processors

In this section, we provide a brief overview of post-hoc
methods, focusing on their general principles and popular
techniques such as k-Nearest Neighbors (KNN), energy-based
methods, and maximum softmax probability. Post-hoc meth-
ods for OOD detection, also known as post-processors, aim
to identify OOD samples by analyzing the features or outputs
generated by a pre-trained classifier network. These methods
do not require modification to the network architecture or
retraining, making them a flexible and efficient option for
OOD detection. Post-hoc techniques rely on the assumption
that the feature embeddings or output scores of OOD samples
are significantly different from those of in-distribution (ID)
samples.

1) The K-Nearest Neighbors (KNN) approach: The authors
of [26] propose a deep k-Nearest Neighbor (KNN) approach
for detecting out-of-distribution (OOD) samples. This method
falls under the category of distance-based techniques, which



assumes that OOD samples are located far away from in-
distribution (ID) data in the feature embedding space. Unlike
previous distance-based methods that relied on parametric
density estimation and assumed multivariate Gaussian distribu-
tions, the authors suggest a non-parametric density estimation
using nearest neighbors for OOD detection.

Although the KNN approach is relatively straightforward,
it has not been thoroughly explored in the context of OOD
detection. To determine whether an input is OOD, the method
calculates the k-th nearest neighbor distance between the
embedding of each test image and the training set, using a
simple threshold-based criterion. Following the approach in
rectified activations, the method uses the normalized penulti-
mate feature z = ϕ(x)

|ϕ(x)|2 for OOD detection, where ϕ is the
feature encoder.

During testing, the method obtains the normalized feature
vector z for a test sample x and computes the Euclidean
distances ||zi − z∗||2 with respect to the embedding vectors
zi ∈ Zn. The data sequence Zn is then reordered based on the
increasing distance ||zi − z∗||2, and the reordered sequence
is denoted as Z′

n = (z(1), z(2), . . . , z(n)). The OOD detection
decision function is given by:

G (z∗; k) = 1 {−rk (z
∗) ≥ λ} , (19)

where rk(z
∗) = ||z−z(k)||2 is the distance to the k-th nearest

neighbor and 1· is the indicator function. The threshold λ is
selected to ensure that a high proportion of ID data (e.g., 95%)
is correctly classified. This threshold does not depend on OOD
data.

The KNN approach provides a more adaptable and poten-
tially more precise method for detecting OOD samples because
it does not rely on strong distributional assumptions about the
learned feature space.

E. Other approaches

Energy-based methods, on the other hand, focus on the
energy values computed from the feature embeddings. These
methods assume that OOD samples have higher energy values
compared to ID samples, as the classifier has not seen these
inputs before. By computing energy values for each input and
comparing them against a threshold, energy-based methods
can effectively distinguish between OOD and ID samples.

Another common post-hoc approach is analyzing the max-
imum softmax probability (MSP) of the classifier’s output.
Under this method, it is expected that the MSP for OOD
samples will be lower than that of ID samples, as the classifier
should be less confident in its predictions for unfamiliar data.
By comparing the MSP values against a threshold, the method
can identify OOD samples.

III. EXPERIMENTS

A. Experimental Setup

In this experiment, we consider the problem of in-
distribution classification on the CIFAR-10 [18] dataset
and out-of-distribution (OOD) classification on three other
datasets, namely SVHN [27], MNIST, [28] and Texture [29].

The feature extraction model comprises two architectures:
LeNet [30] and ResNet [31], which are popular deep-learning
models for image classification tasks. We use two optimization
algorithms, namely Adam and Bayesian optimizers (using
VOGN algorithm), to train the model seperately. We evaluate
the performance of the models using three different meth-
ods introduce in the previous section: K Nearest Neighbors,
Energy-based, and Maximum Softmax Probability. We also
use data augmentation techniques, specifically Style Transfer
Mix, to augment the dataset and improve model performance.
We trained the models on a high-performance computing
system equipped with an RTX TITAN GPU with 24G of
memory. The experiment aims to investigate the robustness
and generalization of the model against OOD samples. We
report the performance of the models using standard metrics,
including accuracy, precision, recall, and F1-score, and analyze
the results to draw insights into the suitability of the models
for real-world applications. Overall, this experiment provides
a comprehensive evaluation of different techniques for in-
distribution and OOD classification tasks on image datasets.

B. Metrics

In the context of Out-of-Distribution (OOD) detection,
several performance metrics are commonly used. The False
Positive Rate at 95% True Negative Rate (FPR95) measures
the percentage of out-of-distribution samples that are mis-
classified as in-distribution at a fixed True Negative Rate of
95%. The Area Under the Receiver Operating Characteristic
curve (AUROC) is a common metric for binary classification
problems, and measures the trade-off between the True Pos-
itive Rate and the False Positive Rate. The Area Under the
Input-dependent Confidence Score curve (AUIN) measures the
confidence of the model’s prediction for a given input, and is
used to evaluate the model’s ability to detect samples that are
out-of-distribution.

Additionally, other metrics such as the False Negative Rate
(FNR), Accuracy (ACC), and End-to-end Accuracy (End-
to-end ACC) are also used to evaluate the performance of
OOD detection methods. The FNR measures the percent-
age of in-distribution samples that are misclassified as out-
of-distribution, while the ACC measures the percentage of
correctly classified in-distribution samples. The End-to-end
ACC takes into account both the accuracy of the original
model and the effectiveness of the OOD detection method in
detecting out-of-distribution samples. The formula for end-to-
end accuracy is TP/(TP+FP), where TP is the number of true
positives, and FP is the number of false positives. Together,
these performance metrics provide a comprehensive evaluation
of the model’s ability to classify and detect inputs and can
be used to guide the development and improvement of OOD
detection methods.

Similar to literature [34], we also use predictive entropy
as one metric to test the out-of-distribution performance.
Predictive entropy is given by

∑K
k=1 −pik log(pik), where k

represents the number of classes of the dataset and i represents
the image index. Ideally, as the entropy represents the stability



of the model, a model with high entropy indicates that it
is unsure about which class images belong to. For OOD
detection, a good model will have more examples with lower
entropy on in-distribution data, which indicates that the model
is confident in the classes of input images. In contrast, on out-
of-distribution data, a good model will have more examples
with lower entropy, which shows that the model is uncertain
of the inputs.

C. Main Results and Analysis

Firstly, We present the results of the data augmentation in
Table I. With the same OOD detection method and model
architecture, our proposed Style Mix Transfer reduces the aver-
age FPR95 by 3.56% and AUROC by 0.86%, compared to the
performance of the same OOD detection method and model
architecture without data augmentation. The corresponding
end-to-end accuracy also increases 0.08%.

We also show the predictive entropy histograms to compare
the performance of Adam and Bayesian optimizers, illustrated
in Figure 6 and Figure 7. Ideally, we want the predictive
entropy to be high on out-of-distribution data and to be low
on in-distribution data. On LeNet5 with batch normalization,
the Bayesian optimizer shows the desired result: entropies are
lower in in-distribution data and higher in out-of-distribution
data compared with Adam.

To further prove our results, we further explain below four
instances as examples. Figure 8 shows an ID instance that
both Adam and Bayesian classify correctly as ID data, but
the confidence score output by Adam (0.4489) is much lower
than Bayesian (1.4416). This indicates that Bayesian method
is more confidence on in-distribution data, which is up to
our expectation. Figure 9 shows an ID instance where Adam
mistakenly categorizes it as OOD with confidence score =
0.6325 but Bayesian correctly classifies it as ID with the
confidence score = 0.41. Figure 11 is an OOD instance
that both Adam and Bayesian correctly classify. However,
Adam has higher confidence score (1.6029) than Bayesian
method (0.7948). Since lower confidence score in out-of-
distribution data represents higher uncertainty, this demon-
strates that Bayesian method can improve the uncertainty on
out-of-distribution samples. Figure 10 is an OOD instance that
Adam mistakenly classifies it as ID with confidence score =
1.4615 while the Bayesian correctly classifies it as OOD data
with confidence score = 0.3577. All four instances show that
the Bayesian optimizer can identify in-distribution data with
more confidence and recognize out-of-distribution data with
improved uncertainty, which outperforms the Adam optimizer
in performance.

For the effect of rectified layer, we can see from Table III
that adding a ReAct layer to the Lenet5 model has positive
effect on the FPR95 and AUROC value in OOD detection.
Meaning that the ReAct method indeed mitigates the negative
effect of overconfidence regarding to OOD samples.

IV. DISCUSSIONS

In this study, we introduce a novel data augmentation
technique, Style Transfer Mix, which demonstrates marginally
improved performance compared to the original dataset with-
out any data augmentation. It is crucial to acknowledge that
the instances within our utilized dataset consist of 32 × 32
images, potentially limiting the capacity to fully exhibit the
advantages of incorporating style transfer. We expect that
employing a more sophisticated model and a dataset with real-
world settings will yield enhanced performance outcomes.

Regarding Bayesian optimizer (VOGN), in our project, we
directly apply the model proposed by [12] and the imple-
mentation structure presented by [15]. However, the Bayesian
optimizer method advocated by previous research is aimed at
solving common optimization problems and can be applied
to all cases related to deep learning, and it is not targeted at
solving OOD detection problems. Our project further explores
the availability and efficiency of Bayesian principles applied
to OOD detection by comparing the performance of Bayesian
and Adam optimizers and therefore provides strong support
for the proposal of previous related research.

Nevertheless, as mentioned before, the Bayesian optimizer
applied in our project is not OOD-oriented. For future work,
we reframe the Bayesian optimizer method by looking for
representative losses that can better measure the difference
between distributions, such as Wasserstein loss.

We observe that OOD samples can cause unusual activation
patterns in neural networks, and the effectiveness of the recti-
fied activation method in mitigating this issue is demonstrated.
However, further research is necessary to fully understand the
underlying reasons for this phenomenon. Our study highlights
the advantages and disadvantages of BatchNorm, which can
result in unusually high unit activations when applied to out-
of-distribution data without adjustments. In future work, we
suggest analyzing the neural network’s training and evaluation
mechanisms to provide a better explanation for the observed
activation patterns in Figure 5 and to identify ways to improve
the performance of OOD detection in neural networks.

V. CONCLUSION

In our study, we present a novel model designed to
effectively address the out-of-distribution (OOD) detection
problem. This model incorporates Bayesian principles as an
optimizer to facilitate superior feature extraction, leverages
Style Transfer Mix for image enhancement, and employs
rectified activations to mitigate overconfidence issues. Our
findings indicate that the Bayesian optimizer surpasses tradi-
tional optimization methods, such as Adam, in performance.
Furthermore, the integration of data augmentation techniques,
such as Style Transfer Mix, and the utilization of rectified
activations contribute to improved uncertainty estimation and
reduced overconfidence in OOD data.



Fig. 6. Histograms of predictive entropy trained on LeNet5 and two separate optimizers, Adam and Bayesian. We clearly see that entropies are lower on
in-distribution data (CIFAR-10) and higher on out-of-distribution data (MNIST and SVHN) optimized by the Bayesian method.
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Fig. 7. A follow-up of Figure 6. From left to right: in-distribution data (CIFAR10), out-of-distribution data (MNIST), out-of-distribution data(SVHN). We
can observe that the Bayesian optimizer has lower entropies in in-distribution data and higher in out-of-distribution data



TABLE I
PERFORMANCE METRICS FOR OOD DETECTION METHOD USING DATA AUGMENTATION

Model name Optimizer OOD detection method OOD dataset FPR95 AUROC AUIN

ResNet18 Adam knn

SVHN 72.14 87.73 82.64
MNIST 66.31 89.63 80.10
Texture 61.51 87.82 93.12

AVG 66.65 88.39 85.29
Without data augmentation FNR: 5.01, Acc: 94.23, End-to-end Acc: 91.32

ResNet18 Adam knn

SVHN 68.73 88.21 83.30
MNIST 61.52 90.72 81.75
Texture 59.01 88.83 93.77

AVG 63.09 89.25 86.27
With style_transfer_mix FNR: 5.01, Acc: 94.23, End-to-end Acc: 91.40

TABLE II
PERFORMANCE METRICS FOR OOD DETECTION METHOD USING BAYESIAN AND ADAM OPTIMIER

Model name Optimizer OOD detection method OOD dataset FPR95 AUROC AUIN

Lenet5 Adam knn

SVHN 98.37 63.91 31.05
MNIST 98.72 71.08 78.28
Texture 79.65 73.39 82.60

AVG 92.25 69.46 63.98
FNR: 5.01, Acc: 47.63, End-to-end Acc: 46.26

Lenet5 Bayesian knn

SVHN 98.23 49.62 13.51
MNIST 99.96 58.17 67.72
Texture 90.85 60.40 72.58

AVG 96.35 56.07 51.27
FNR: 5.01, Acc: 67.23, End-to-end Acc: 65.06

TABLE III
PERFORMANCE METRICS FOR OOD DETECTION METHOD USING RECTIFIED ACTIVATION

Model name Optimizer OOD detection method OOD dataset FPR95 AUROC AUIN

Lenet5 Adam knn

SVHN 98.41 63.87 32.23
MNIST 99.92 59.55 71.75
Texture 77.61 75.50 84.35

AVG 91.98 66.31 62.78
Without rectified layer FNR: 5.01, Acc: 48,81, End-to-end Acc: 47.56

Lenet5 Adam knn

SVHN 98.02 64.51 31.62
MNIST 99.21 70.69 78.40
Texture 79.38 73.39 82.60

AVG 92.20 69.53 64.21
With rectified layer FNR: 5.01, Acc: 47.63, End-to-end Acc: 46.32

Fig. 8. ID Instance 1 Fig. 9. ID Instance 2 Fig. 10. OOD Instance 1 Fig. 11. OOD Instance 2
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work: Uncertainty estimation without OOD samples via density-
based Pseudo-Counts,” arXiv.org, 22-Oct-2020. [Online]. Available:
https://arxiv.org/abs/2006.09239. [Accessed: 19-Apr-2023].

[4] C. Gonzalez et al., “Distance-based detection of out-of-distribution silent
failures for Covid-19 lung lesion segmentation.” arXiv, Aug. 05, 2022.
doi: 10.48550/arXiv.2208.03217.

[5] S. M. Kahya, M. S. Yavuz, and E. Steinbach, “Reconstruction-based
Out-of-Distribution Detection for Short-Range FMCW Radar.” arXiv,
Feb. 27, 2023. doi: 10.48550/arXiv.2302.14192.

[6] J. Bradshaw, A. G. de G. Matthews, and Z. Ghahramani, “Ad-
versarial Examples, Uncertainty, and Transfer Testing Robustness in
Gaussian Process Hybrid Deep Networks.” arXiv, Jul. 08, 2017. doi:
10.48550/arXiv.1707.02476.

[7] R. M. Neal, Bayesian Learning for Neural Networks, vol. 118. in Lecture
Notes in Statistics, vol. 118. New York, NY: Springer New York, 1996.
doi: 10.1007/978-1-4612-0745-0.

[8] D. Mackay, “Bayesian Methods for Adaptive Models,” PhD thesis,
California Institute of Technology, 1991.

[9] G. Rey E. Hinton and D. van Camp, “Keeping the neural net-
works simple by minimizing the description length of the weights
| Proceedings of the sixth annual conference on Computational
learning theory,” Accessed: Apr. 23, 2023. [Online]. Available:
https://dl.acm.org/doi/10.1145/168304.168306

[10] L. K. Saul, T. Jaakkola, and M. I. Jordan, “Mean Field Theory for
Sigmoid Belief Networks.” arXiv, Feb. 29, 1996. Accessed: Apr. 23,
2023. [Online]. Available: http://arxiv.org/abs/cs/9603102

[11] C. Peterson, “A Mean Field Theory Learning Algorithm for Neural
Networks”.

[12] C. M. Bishop, Pattern recognition and machine learning. in Information
science and statistics. New York: Springer, 2006.

[13] D. MacKay, “Information Theory, Inference, and Learning Algorithms”.
[14] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition

Challenge.” arXiv, Jan. 29, 2015. doi: 10.48550/arXiv.1409.0575.
[15] K. Osawa et al., “Practical Deep Learning with Bayesian Principles.”

arXiv, Oct. 29, 2019. Accessed: Apr. 20, 2023. [Online]. Available:
http://arxiv.org/abs/1906.02506

[16] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmen-
tation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Jul.
2019, doi: 10.1186/s40537-019-0197-0.

[17] P. T. Jackson, A. Atapour-Abarghouei, S. Bonner, T. Breckon, and B.
Obara, “Style Augmentation: Data Augmentation via Style Randomiza-
tion.” arXiv, Apr. 12, 2019. Accessed: Apr. 19, 2023. [Online]. Available:
http://arxiv.org/abs/1809.05375

[18] “CIFAR-10 and CIFAR-100 datasets.” https://www.cs.toronto.edu/ kriz/-
cifar.html (accessed Apr. 23, 2023).

[19] D. Hendrycks et al., “PixMix: Dreamlike Pictures Comprehensively
Improve Safety Measures.” arXiv, Mar. 29, 2022. Accessed: Apr. 19,
2023. [Online]. Available: http://arxiv.org/abs/2112.05135

[20] M. E. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava,
“Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in
Adam.” arXiv, Aug. 02, 2018. doi: 10.48550/arXiv.1806.04854.

[21] A. Graves, “Practical Variational Inference for Neural Networks,” in
Advances in Neural Information Processing Systems, Curran Associates,
Inc., 2011.

[22] G. Zhang, S. Sun, D. Duvenaud, and R. Grosse, “Noisy Natu-
ral Gradient as Variational Inference.” arXiv, Feb. 26, 2018. doi:
10.48550/arXiv.1712.02390.

[23] M. E. Khan and H. Rue, “The Bayesian Learning Rule.” arXiv,
Mar. 18, 2022. Accessed: Apr. 23, 2023. [Online]. Available:
http://arxiv.org/abs/2107.04562

[24] M. E. Khan and W. Lin, “Conjugate-Computation Variational Inference:
Converting Variational Inference in Non-Conjugate Models to Inferences

in Conjugate Models.” arXiv, Apr. 13, 2017. Accessed: Apr. 23, 2023.
[Online]. Available: http://arxiv.org/abs/1703.04265

[25] Y. Sun, C. Guo, and Y. Li, “ReAct: Out-of-distribution De-
tection With Rectified Activations.” arXiv, Nov. 24, 2021. doi:
10.48550/arXiv.2111.12797.

[26] Y. Sun, Y. Ming, X. Zhu, and Y. Li, “Out-of-Distribution Detection
with Deep Nearest Neighbors.” arXiv, Dec. 07, 2022. Accessed: Apr.
20, 2023. [Online]. Available: http://arxiv.org/abs/2204.06507

[27] “The Street View House Numbers (SVHN) Dataset.”
http://ufldl.stanford.edu/housenumbers/ (accessed Apr. 23, 2023).

[28] “MNIST handwritten digit database, Yann LeCun, Corinna Cortes and
Chris Burges.” http://yann.lecun.com/exdb/mnist/ (accessed Apr. 23,
2023).

[29] “Describable Textures Dataset.” https://www.robots.ox.ac.uk/ vgg/-
data/dtd/ (accessed Apr. 23, 2023).

[30] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition.” arXiv, Dec. 10, 2015. doi: 10.48550/arXiv.1512.03385.

[32] K. Osawa et al., “Practical Deep Learning with Bayesian Principles.”
arXiv, Oct. 29, 2019. doi: 10.48550/arXiv.1906.02506.

[33] D. Barber and C. M. Bishop, “Ensemble Learning in Bayesian Neural
Networks”.

[34] D. Hendrycks and K. Gimpel, “A Baseline for Detecting Misclassified
and Out-of-Distribution Examples in Neural Networks.” arXiv, Oct. 03,
2018. doi: 10.48550/arXiv.1610.02136.


	Introduction
	Methods
	Data Augmentation
	Bayesian Optimizer Model
	VI and natural-gradient updates
	Natural-gradient VI
	VOGN

	Rectified Activations
	Out-of-Distribution Post Processors
	The K-Nearest Neighbors (KNN) approach

	Other approaches

	Experiments
	Experimental Setup
	Metrics
	Main Results and Analysis

	Discussions
	Conclusion
	References

