YUEQIAN LIN

 $\underline{yl768@duke.edu} | \underline{GitHub} | \underline{Website}$

EDUCATION

Duke Kunshan University

B.S. in Data Science (By Duke Kunshan)

- B.S. in Interdisciplinary Studies (Subplan: Data Science; by Duke)
- GPA 3.99/4.00; GRE: 329/340; TOEFL: 111/120
- Kunshan Full Scholarship (merit-based)
- National Endeavor Scholarship (2021, 2022)
- DKU Summer Research Scholarship (2022, 2023)
- Dean's List with Distinction (Fall 2020/Spring 2021/Fall 2021/Spring 2022/Fall 2022)
- Dean's List (Spring 2023)
- Natural & Applied Sciences Division Award (2020-21)

Publications & Manuscripts

- Yueqian Lin, Dong Liu, Yunfei Xu, Hongbin Suo, and Ming Li. Bridging facial imagery and vocal reality: Stable diffusionenhanced voice generation, 2024. Manuscript submitted to Interspeech 2024
- Jiatong Shi^{*}, **Yueqian Lin^{*}**, Xinyi Bai, Keyi Zhang, Yuning Wu, Yuxun Tang, Yifeng Yu, Qin Jin, and Shinji Watanabe. Singing voice data scaling-up: An introduction to ACE-Opencopp and KiSing-v2, 2024. Manuscript submitted to Interspeech 2024
- Dong Liu, **Yueqian Lin**, Zexin Cai, Yunfei Xu, and Ming Li. TMCSPEECH: A Chinese TV and movie speech dataset with character descriptions and a character-based voice generation model, 2024. Manuscript submitted to IEEE Conference on Multimedia Expo 2024
- Yueqian Lin*, Jingyang Zhang*, Yiran Chen, and Hai Li. SD-NAE: Generating natural adversarial examples with stable diffusion. In International Conference on Learning Representations 2024, Tiny Papers Track, 2024
- Yueqian Lin and Ming Li. EEG-based speech envelope decoding: Structured state space and U-Net model integration. In *National Conference on Man-Machine Speech Communication*, 2023
- Huali Zhou*, Yueqian Lin*, Yao Shi, Peng Sun, and Ming Li. BiSinger: Bilingual singing voice synthesis. In *IEEE Automatic Speech Recognition & Understanding*, 2023
- Xingyu Shen*, **Yueqian Lin***, Zhixian Zhang*, and Xin Tong. RTVis: Research trend visualization toolkit. In *IEEE VIS:* Visualization & Visual Analytics, 2023
- Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, **Yueqian Lin**, Haoran Zhang, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Yixuan Li, Ziwei Liu, Yiran Chen, and Hai Li. OpenOOD v1. 5: Enhanced benchmark for out-of-distribution detection. In *NeurIPS Workshop on Distribution Shifts: New Frontiers with Foundation Models*, 2023
- Kamlesh Bornani, Nicholas F Mendez, Abdullah S Altorbaq, Alejandro J Mueller, **Yueqian Lin**, Eric Zhonghang Qu, Kai Zhang, Sanat K. Kumar, and Linda S Schadler. In situ atomic force microscopy tracking of nanoparticle migration in semicrystalline polymers. *ACS Macro Letters*, 11(6):818–824, 2022
- * indicates equal contribution

Projects

Enhancing OOD Detection through Bayesian Optimizer-Trained Models • Spearheaded the development and validation of a Bayesian-based optimizer for training feature	· · · · · · · · · · · · · · · · · · ·
by the creation of a novel data augmentation method to improve model robustness and safety	у.
Musical Note Detection through Classical Computer Vision Methods	March 2023 - May 2023
• Transcribed musical notes from a sheet music image using traditional computer vision techni phological operations, and template matching.	ques like Hough transform, mor-
Hands-on Machine Learning: an Introductive Website Approach	October 2022 - December 2022
• Built an interactive website using HTML, CSS and JS to introduce machine learning and deep learning concepts for beginners.	

TECHNICAL STRENGTHS & CERTIFICATIONS

Programming Languages	Python, Java, C++, MATLAB, HTML, CSS, JavaScript, R, LaTeX, Markdown
Machine Learning	PyTorch, TensorFlow, Keras, Scikit-learn
Data Analysis	Pandas, NumPy, SciPy, Matplotlib, Seaborn, Tableau
Misc	Git, Linux, Jupyter Notebook, Docker
Certifications	Level 1 Tutor Certificate by College Reading and Learning Association
	Machine Learning, Deep Learning Specialization by Coursera & DeepLearning.AI
	Google Data Analysis by Coursera

August 2020 - May 2024 Kunshan, China Durham, USA